
INTRODUCTION 

The theory of yarn unwinding and the balloon theory
has a long history. Different authors tried to develop
it and influenced the theory through the certain peri-
od of time [1–7]. The theory as we know it today was
heavily influenced by Fraser, Ghosh and Batra [8].
They applied perturbation theory to show how to
eliminate time dependence from the equation of
motion of a cylindrical packages in a mathematically
correct way. They derived moving boundary condition
for packages with small winding angles. Fraser also
found out that for elastic yarn the tension in the
balloon is smaller [9, 10]. However, it turns out that
this effect is small for elastic constants encountered
in typical yarns [11]. The theory of yarn movement on
the surface of the package was developed simulta-
neously with the balloon theory. Both theories solved
the simplified equations at stationary boundary con-
ditions and so determined the length of the sliding
yarn [3]. The computation was verified by Fraser et
al. [9]. During unwinding from the package the yarn
moves over the surface of the package. The point
where the yarn leaves the package is called a lift-off

point. The residual tension of the yarn from the inte-
rior of the package is released at this point. The
equations of motion of the yarn are known. We
derived them in our previous contribution [12]. As we
will show here it is possible to obtain a partial analyt-
ical solution demonstrating the existence of the resid-
ual force. 

GENERAL EQUATION OF MOTION FOR YARN

The yarn is unwinding from a fixed cylindrical pack-
age in horizontal direction with velocity V through the
guide-eye O (figure 1). The origin of the coordinate
system is at the guide-eye. Point Lp is the lift-off
point, i.e., the point where the yarn leaves the surface
of the packages to form the balloon. Angle f is the
angle of the winding on the package. We are inter-
ested in balloon motion, i.e., the time variation of the
position radius vector r(s,t) of the yarn in space.
The theory of yarn unwinding off a package and the
balloon equations was derived in the previous work
[12]:

 rr(D2r + 2w × Dr + w × (w × r) + w × r) =     (T    ) + f
s s (1)
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Yarn unwinding from a package is an essential step in many textile processes. The quality of the yarn is numerically
expressed mainly by values of mechanical quantities. In the unwinding process viscoelastic properties are the most
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Modelarea tensiunii în derularea bobinei de fire

Derularea firelor dintr-o bobină este un pas esențial în multe procese textile. Calitatea firului este exprimată numeric în
principal prin valori ale mărimilor mecanice. În procesul de derulare proprietățile viscoelastice sunt cele mai importante.
Acestea depind de modul în care firul este solicitat. Calitatea firelor care se derulează nu trebuie redusă, cu excepția
cazului în care această reducere nu scade semnificativ calitatea materialului textil. În timpul derulării, tensiunea firului
nu este constantă, dar oscilează într-un anumit interval. Chiar și atunci când firul nu este solicitat puternic, acesta se
poate rupe uneori. Acesta este motivul pentru care se consideră că o bobină încrucișată nu este o formă ideală și că
astfel de bobine nu sunt întotdeauna realizate fără defecte. Se dorește obținerea de viteze cât mai mari de urzire și
țesere, prin urmare, scopul este să se îmbunătățească teoria derulării bobinei încrucișate și să se identifice modificările
necesare procesului de derulare al firului.

Cuvinte-cheie: modelare, tensiune, dinamica firelor, teoria derulării firului, aproximare cvasi-staționară
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They can be partially analytically solved, as we show
in the following. Fictitious forces on the left-hand side
of the equation are: the Coriolis force –r2w×Dr, the
centrifugal force –rw×(w×r) and the Euler force
–rw×r. D is the differential operator which follows the
motion of a point on the yarn in the rotating reference
frame [8]:  

 D =     | –V     (2)
t r,q,z s

The fact that this operator “follows the motion of the
point in the rotating frame” means, that the partial
time derivative operator only operates on the
coordinates of the point (r, q, z), but it gives zero when
applied on the base vectors ez, eq, er. T is the mechan -
ical tension and f is the linear density of external
forces. In yarn which forms the balloon, f is the air
resistance force [13,14]: 

1f = –    cu r d |vn|vn (3)
2

where cu is the effective air-drag coefficient, r – the
mass per unit length of the yarn, d – the yarn diame-
ter and vn – the normal component of the yarn veloc-
ity. With the help of Dn = 1/2cu rd we can write the air
resistance force in a similar form as found in literature
[12]:

f = – Dn|vn|vn (4)

The equation of motion 1 expressed in the dimen-
sionless form. We express all distances in units of
package radius r = r/c, r = r/c, z = z/c, s = s/c, time
is expressed in units of period of balloon rotation:
t = t/t = w t, velocitis are expressed in units of
unwinding speed: v = v/V, vn = vn/V and finally we
find the following suitable combinations of quantities
for forces and tension [15]:

fc nc      Tf =        , n =        , T =        (5)
rV 2            rV 2           rV 2

Transforming the equantion of motion into the dimen -
sionless form we get:

W
D 2 r + 2W × D r + W × (W × r) + W      × r =

  r
 t

=     (T     ) + f
(6)

s s
where:
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                  c w
D = W     –     , W =      (7)

t s V

The dimensionless air resistance force is:
p0f = –       |vn|vn (8)
16

where:
v = D r + W × r (9)

and
r r

vn =     × (v ×      ) (10)
s s

QUASI-STATIONARY APPROXIMATION

So far our derivation was entirely general. We took
into account that the yarn has constant linear mass
density and that it is unstretchable. The dimension-
less equation 6 derived above enables to study arbi-
trary yarn motion. In the literature we can find two dif-
ferent approaches. In the first approach we simply
assume that the motion is quasi-stationary with
respect to the rotating coordinate system by setting
all time derivatives on zero. In the second approach
we attack the problem with perturbation theory [8].
Namely, it turns out that with a suitable choice of
dimensionless variables the motion equations can be
written in a form where all time derivatives are multi-
plied with a small parameter. Fraser estimates that
for a typical package this parameter is between 0.007
and 0.103, which shows that time derivatives can be
neglected in the first approximation. Perturbation the-
ory is a systematic approach for founding such
approximations. Fraser shows that the fundamental
equation (the equation in the so called zero order)
describes stationary motion et yarn in the rotating
coordinate system. Boundary conditions however
can be time dependent. Besides that it turns out that
W= 1 in the zero order of the theory. This corre -
sponds to the winding angle f = 0°, which limits the
generality of solutions if we work in the fundamental
(zero) order perturbation theory as Fraser did.
Unfortunately equations for corrections are time
dependent which is not very helpful. The use of per-
turbation theory is more justified from a mathematical
point of view but from the perspective of physics the
first approach is also entirety satisfactory and it also
allows greater generality. Therefore we have decided
to use quasi-stationary approximation in the sequel.
If we sent all time derivatives to zero and we omit
writing for dimensionless quantities we get the fol-
lowing quasi-stationary equation of motion. 

2r r  r
     – 2W ×     + W × (W × r) =     (T    ) + f (11)
s2 s s s

A DERIVATION OF COMPONENTE WISE

EQUATIONS OF MOTION

The vectorial equation 11 will be written out in com-
ponent form. This form is more suitable for solving
the equations.
Firstly, we need the first and the second derivative of
the position vector. 

Fig. 1. Yarn unwinding from a cylindrical package

.

P

r(s, t)

x

V

0

y

z
w Lp

Up

c

f



r(r, q, z) = r(s) er (q(s)) + z(s) ez (12)

We emphasize that the basis vector er depends on
the angle q. Therefore it indirectly depends also on
the parameter s. To compute derivatives we use rela-
tions [12]:

er     = eqq
(13)

eq
     = – erq

For the first derivative we get that:

r er   q
     = r ′er + r           + z′ez (14)
s                 q s

= r ′er + r q′ eq+ z′ez

We introduced notation ′ = /s for derivatives with
respect to parameter s.
For the second derivative we get that:

2r er    q
      = r ″er + r ′           + r ′q′eq+ r ′q″eq+ 
s2 q s

eq q+ r q′           + z″ezq s

= r″er + r ′q′eq+ r ′q′eq+ rq″eq – r ′q′q′er + z″ez

= (r″ – rq′2)er + 2r ′q′eq+ r q″eq + z″ez (15)

To make bottle results more transparent we write
them as column vector: 

r′                              r″ – rq′2

r′ =   rq′                r″ =   2r ′q′ + rq″             (16)
z′                                  z″

We will also need the following results which are
obtained from the rules for computing with vector
products: 

0                   – rq′ – r
W × r = W  r   , W × r′ = W    r′ , W × (W × r) = W2  0 

0                      0                               0
(17)

Considerably more work is required for the computa-
tion of the normal component of velocity. We will
need this in expression for the density of the air resis-
tance force. We start with the velocity which is by
equation 9 equal to:

– r ′

v = –r′ + W × r =   – rq′ + W r (18)

–z′

The normal component of velocity can be written as:

– r2q′r ′                    – rq′r ′

vn = r′ × (v × r′) = W rz′2 + rr′2   = W r   z′2 + r′2   (19)

– r2q′z ′                   – rq′z ′

The square of the norm of this vector is:
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|vn|2 = W2((r2q′r′)2 + r2(z′2 + r′2)2 + (r2q′z′)2)
= W2r2(r2q′2r′2 + z′4 + 2z′2r′2 + r′4 + z′2r2q′2)
= W2r2(r ′2(q′2r2 + z′2 + r′2) + z ′2(q′2r2 + z′2 + r′2))
= W2r2(r ′2 + z′2) (r ′2 + r2q′2 + z′2)

= W2r2(r ′2 + z′2) (20)

In the last step we used the inextensibility condition,
r ′2 + r2q′2 + z′2 = 1. Therefore the normal component
of velocity is:

vn = Wrr ′2 + z′2   (21)

It follows that the linear density of air resistance is
equal to:

1
fu = –     p0vnvn16

1
–r2r′q′             1/16 p0 Wr2r′q′vn

= –     p0vnW r (r ′2 + z′2)  =   –1/16 p0 / (Wr) v 3n =
16

–r2q′z′            1/16 p0 Wr2q′z′vn

1

p0 Wr2r′ q′vn

= –     – p0 v 3n / (Wr)  (22)
16

p0 Wr2q′z′vn

By using the formula /s(Tr/s) = T ′r′ + T r″ we can
write the equation of motion as

(1 –T)r″ – 2W × r′ + W × (W × r) = T ′r′ + f (23)

This is a vectorial equation with three components:

1
(1 –T)(r″ –  rq′2) + 2Wrq′ – W2r = T ′r′ +     Wp0 r

2r′q′vn16
(24)

1
(1 –T)(2r′q′ + r q″) – 2Wr′ = T ′r q′ –     p0v 3n /(r W) (25)

1

16

(1 –T)z″ = T ′z′ +     Wp0 r
2q′z′vn (26)

16

The fourth equation is the inextensibility condition:

r′2 + r2q′2 + z′2 = 1                    (27)

Therefore we have four equations for four variables,
r, q, z in T. We multiply the equation (24) with r′, the
equation (25) with r q′ and the equation (26) with z′ to
get:

(1 –T)(r″r′ + r′r q′2 + r2q′q″ + z′z ″) – r r′W2 =

= T ′(r ′2 + r 2 q′2 + z′2) +

1
+     p0 vnW(r 2r′2q2 – q′v 2n /W2 + r 2q′z′2)

16
(28)

The expression between the round brackets on the
right-hand side of the equation is equal to 1, by the
inextensibility condition. The expressions between
the square brackets are both equal to 0. The proof for
the first expression is given by the following equation: 



(r ′r″) + (z ′z″) + (r ′rq′2 + r 2q′q″) =

1            1              1= [   (r ′2) +    (z ′2) +    (r2q′2)′]′
2            2             2

1=    (r ′2 + z ′2 + r2q′2)′
2

1=    (1)′ = 0    (29)2

where we used the inextensibility condition in the
next to last line.
In the second expression we first expand v 2n by using
equation 21, we see that all terms cancel out.
Therefore equation 28 simplifies to: 

T ′ = – W2r r ′ (30)

If we write T0 for the tension in the yarn passing
through the guide (figure 1) we get that:

1T  = T0 –    W2r2 (31)
2

PARTIAL ANALYTICAL SOLUTION

When the yarn is unwinding from the package the lift-
off point moves over a two-dimensional surface. We
can use this in equation 31 to obtain another two-
dimensional problem which can be solved more eas-
ily. It turns out that the tension of the yarn in the inte-
rior of the package can be expressed analytically. We
will therefore assume that our package has a cylin-
drical shape (figure 2), which implies that the radius-
vector to a surface point of the package is [12]:

r = cer + zez (32)

The quantity c is by definition equal to the constant
distance of the point r from the axis of the packag, it
is though equal to the diameter of the layer which is
currently unwinding [12]. The eqaution 31 will now be
used to find the residual tension at the lift-off point Lp.
Therefore we are interested in the velocity with which
the yarns leaves the package. This velocity doesn’t
have to be equal to the unwinding velocity V1.
Namely we have that

V1 = V + s1 (33)

where s1 is the lenght of the yarn in the balloon i.e.
the lenght of the yarn between the guide and the
lift-off point Lp. In other woords  we had to add time

derivative of lenght to the velocity V to obtain the lift-
off velocity. We take into account that:

ds1 ds1  dz1      =             (34)
dt dz1   dt

where z1 is the z coordinate of the lift-off point. 
At quasistationary movement we have that:

ds1      = 1                           (35)
dz1          

because the length of the yarn between the package
and the guide is enlarged exactly by the enght corre-
sponding to the displacement of the point Lp. If we
insert the condition 35 for quasistationary movement
into equation 32 we obtain boundary conditions at the
lift-off point which we can express as r = c. The dimen-
sionless boundary condition at the lift-off point
becomes:

r(sLp,t) = 1 (36)

Inserting condition (35) into equation 31 we get that
the tension at the Lp is then equal to:

1T – T0 =    W2 (37)
2

The equation 37 tells us that tension in the yarn drops
from its value in the balloon (at the lift-off point) to its
residual value, defined as the tension of the yarn
inside the package. If we write TR = W2/2 for the
residual tension in the yarn (figure 3), we get that:

T – T0 = TR (38)

CONCLUSIONS

We saw how the equation for yarn tension in the bal-
loon can be obtained from the general equation of
yarn by replacing the usual perturbation theory
approach with quasi-stationary approximation. The
tension T of the yarn in the balloon consists of two
points: from the tension T0 in the yarn at the guide-
eye and from the residual tension TR in the yarn:
T – T0 = TR. Analytical solutions enable a better under-
standing of interdependencies between various
quantities. The residual tension in the yarn has not
been studied enough so far. We showed that it
enables a reduction of the yarn tension in the balloon.
This is the first analytical proof of the existence of the
residual force in the theory of yarn unwinding.
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Fig. 2. Coordinate frame correspond to equation (31)
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Fig. 3. View of the “balloon” (illustration of equations 38)
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